

2013 Marking Scheme

Grade	Mark R	equired	°
Awarded	(/ ₈₀)	%	% candidates achieving grade
A	58+	72.5%+	41.0%
В	49+	61%+	21.4%
С	41+	51%+	17.9%
D	37+	46%+	6.5%
No award	<37	×46%	13.2%

Section	:	Multiple Ch	oice	Extended Answer		
Average M	ark:	20.5	/30	32.9	/50	

	2013 Int2 Chemistry Marking Scheme					
MC Qu	Answer	% Pupils Correct	Reasoning			
1	В	93	 A energy is released in any exothermic reaction to the surroundings B energy is released in any exothermic reaction to the surroundings C energy absorbed from the surroundings is an endothermic reaction D when the products have more energy than the reactants then energy has been absorbed from the surroundings during the reaction - endothermic reaction 			
2	A	83	$\overrightarrow{\mathbf{Z}}$ A HCl _(g) + H ₂ O(l) \rightarrow H ⁺ (aq) + Cl ⁻ (aq) is the correct equation including state symbols $\overrightarrow{\mathbf{Z}}$ B hydrogen chloride HCl is a gas in the question but a liquid in the equation $\overrightarrow{\mathbf{Z}}$ C hydrogen chloride HCl is a gas in the question but an aqueous in the equation $\overrightarrow{\mathbf{Z}}$ D H ⁺ and Cl ⁻ ion are aqueous (aq) when in solution not liquids			
3	В	69	SoluteSubstance which is dissolved (ethanol)SolventLiquid which does the dissolving (water)SolutionMixture of solute dissolved in the solvent (whisky)			
	В	79	\blacksquare A hydration of ethene is a chemical process not an enzyme-catalysed reaction \blacksquare B hydrolysis of starch into glucose is catalysed by the enzyme amylase \blacksquare C hydrocarbon cracking is a chemical process not an enzyme-catalysed reaction \blacksquare D alkanes \rightarrow alkenes is a chemical process not an enzyme-catalysed reaction			
5	С	92	ParticleLocationChargeMassProtonin nucleus+11 amuNeutronin nucleus01 amuElectronoutside nucleus-1approx zero			
6	A	77	Group O elements have a full outer shell and are stable. Elements in other groups can share electrons in covalent bonds to achieve a full outer shell.			
7	В	39	 ▼A vanadium (V) oxide has the formula V2O5 ✓B vanadium (IV) oxide has the formula VO2 ▼C vanadium (III) oxide has the formula V2O3 ▼D vanadium (II) oxide has the formula VO 			
8	A	64	Equation in question $4NH_3 + xO_2 \rightarrow 4NO + yH_2O$ 12H before arrow $4NH_3 + xO_2 \rightarrow 4NO + 6H_2O$ $\therefore 6H_2O$ required to balance 12H $4NH_3 + xO_2 \rightarrow 4NO + 6H_2O$ $4NO + 6H_2O$ before arrow = 10xO $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ $\therefore 5O_2$ required to balance 10xO $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$			
9	D	82	 ☑ A gfm of CO = (1x12) + (1x16) = 12 + 16 = 28g ☑ B gfm of CO₂ = (1x12) + (2x16) = 12+32 = 44g ☑ C gfm of N₂ = (2x14) = 28g ☑ D afm of CH₄ = (1x12) + (4x1) = 12+4 = 16a 			
10	С	90	Isomers have same molecular formula but different structural formula. Chemical in question has a formula of C_5H_{12} $\blacksquare A$ chemical has a formula of C_5H_{10} \therefore not an isomer because of different formula $\blacksquare B$ chemical has a formula of C_5H_{10} \therefore not an isomer because of different formula $\blacksquare C$ chemical has a formula of C_5H_{12} \therefore same formula but different structure $\blacksquare D$ chemical has a formula of C_6H_{14} \therefore not an isomer because of different formula			
11	С	46	■A if compound burned produces H ₂ O then hydrogen must be found in the fuel ■B if compound burned produces CO ₂ then carbon must be found in the fuel ■C If CO ₂ and H ₂ O are found in the products then fuel contains both C and H ■D oxygen could either be found in the fuel or the air the fuel burned in			

12	С	68	EA cyclohexane has the formula C_6H_{12} EB cyclohexane does not rapidly decolourise bromine solution (no C=C double bond) C cyclohexane has the formula C_6H_{12} and does not react with bromine solution ED cyclohexane has the formula C_6H_{12}
13	В	84	glucose $\xrightarrow{\text{enzymes}}$ ethanol + carbon dioxide $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$
14	С	61	Н Н Н Н Н Н Н Н H-C-C-C-H → H-C-C=C-H H H OH H + H₂O
15	В	78	■ A if n=2, $C_nH_{n+4}N$ would give a formula of C_2H_6N (compound 2 had formula C_2H_7N) ■ B if n=2, $C_nH_{2n+3}N$ would give a formula of C_2H_7N (compound 2 had formula C_2H_7N) ■ C if n=2, $C_nH_{3n+2}N$ would give a formula of C_2H_8N (compound 2 had formula C_2H_7N) ■ D if n=2, $C_nH_{4n+1}N$ would give a formula of C_2H_9N (compound 2 had formula C_2H_7N)
16	В	68	 A biopol is a synthetic compound and not found in nature B biopol is synthetic and is biodegradable (broken down by bacteria) C biopol is a synthetic compound and not found in nature b biopol is a biodegradable polymer and is able to be broken down by bacteria
17	D	68	 Image: A -C₁₇H₃₅ is saturated and contains no C=C double bonds B -C₁₇H₃₃ is unsaturated and contains one C=C double bond C -C₁₇H₃₁ is unsaturated and contains two C=C double bonds D -C₁₇H₂₉ is unsaturated and contains three C=C double bonds
18	С	83	 A all solutions contain hydrogen ions and hydroxide ions at all times B neutral solutions contain equal numbers of hydrogen and hydroxide ions C alkaline solutions contain more hydroxide ions than hydrogen ions acidic solutions contain more hydrogen ions than hydroxide ions
19	D	65	\blacksquare A sucrose does not react with Benedict's solution \blacksquare B sucrose does not react with Benedict's solution \blacksquare C starch does not react with Benedict's solution \blacksquare D both maltose and glucose turn Benedict's solution blue \rightarrow brick red
20	A	78	 ☑ A as pH rises from 3 to 6, concentration of H⁺ ions decreases ☑ B OH⁻ ions increase in number as pH rises from 3 to 6 ☑ C at pH=6, concentration of H⁺ ions is greater than concentration of OH⁻ ions ☑ D as pH rises from 3 to 6, concentration of H⁺ ions decreases
21	С	60	concentration = <u>no. of moles</u> = <u>0.25 mol</u> = 0.5 mol l ⁻¹ volume = 0.5 litres
22	A	59	Bases are compounds which neutralise acids and form water e.g. metal hydroxides (alkalis), metal oxides and metal carbonates
23	D	40	 A Argon is an insoluble noble gas and does not react with acidic solutions B Oxygen is an insoluble gas and does not react with acidic solutions C Ammonia dissolves in water to form an alkali would not react with an alkali Nitrogen dioxide forms an acidic solution and would react with alkali
24	A	42	 A Ammonium chloride is made during the neutralisation of ammonium hydroxide with hydrochloric acid B Calcium oxide cannot be made by the neutralisation of an acid C Hydrogen chloride cannot be made by the neutralisation of an acid D sodium hydroxide cannot be made by the neutralisation of an acid
25	D	82	 A Condensation: change of state from gas to liquid B Distillation: separation of chemicals with different boiling points C Evaporation: change of state from liquid to gas D Filtration: separation of insoluble solid from a liquid/solution

26	D	60	 A electrons always flow through wires not solutions B electrons always flow through wires not solutions C copper is lower down than tin so electrons flow from tin to copper D electrons flow through wires from higher up metals to lower down metals 						
27	A	68	Magnesium Alumini	Jm Zinc	Iron B	Nickel A	Tin	Lead	Copper
28	A	74	 A iron nail corrodes to protect copper wire and salt water speeds up corrosion B salt water is speeds up corrosion compared to tap water C iron nail does not corrode as zinc protects iron nail by sacrificial protection D iron nail does not corrode as zinc protects iron nail by sacrificial protection 						
29	В	45	 A displacement: higher up metals displace lower down ions from compounds B metal atoms lose electrons to become metal ions (oxidation is loss of electrons) C precipitation: insoluble substance formed when two solutions are mixed D metal atoms lose electrons to become metal ions (reduction is gain of electrons) 						
30	D	58	Method Metals Made This Way Reason	Electrol Potassium Lithium Magnesium A most reactive	ysis Sodium Calcium Iuminium e metals	Heat With C Zinc I Nickel Lead Co medium reactiv	Carbon Fron Tin pper e metals	Heat A Mercury Gold least reactin	Silver Platinum ve metals

	2013 Int2	Chemistry Marking Scheme
Long Qu	Answer	Reasoning
1 a(i)	red	ElementBariumCalciumCopperLithiumPotassiumSodiumStrontiumFlame Colourgreenorange-redblue-greenredlilacyellowred
1a (ii)	Same group in Periodic Table	Elements in the same group of the periodic table have similar chemical properties e.g. alkali metals in group 1, noble gases in group 0
1b	Positive Negative electrode electrode	Chlorine gas is formed at the positive electrode: $2Cl^{-}(l) \longrightarrow Cl_{2(g)} + 2e^{-}$ Strontium metal is formed at the negative electrode: $Sr^{2^{+}}(l) + 2e^{-} \longrightarrow Sr(l)$
2a	Answer to include:	PPA 1.2 Question: Measure time for the "x" to disappear, then calculate rate = ¹ / _{time}
2b	One from:	Concentration of reactants Volume of reactants The "x" Depth of reactants
2c	Well ventilated room	The sulphur dioxide gas given off in this experiment should not be allowed to build up.
2d	2Na⁺ and 2CI⁻	Spectator ions appear chemically unchanged on both sides of a chemical equation: $2Na^{+}$ appears on both sides of equation $2Na^{+} + S_2O_3^{2^-} + 2H^{+} + 2Cl^{-} \rightarrow 2Na^{+} + 2Cl^{-} + SO_2 + S + H_2O$ $2Cl^{-}$ appears on both sides of equation
За	Hydrogen	ACID + METAL \longrightarrow SALT + HYDROGEN sulphuric acid + magnesium \longrightarrow magnesium sulphate + hydrogen
3b	18	rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{72-0}{40-0}$ = 18 cm ³ s ⁻¹
3c	0 cm ³	Copper, mercury, silver, gold and platinum are too unreactive to react with dilute sulphuric acid. No reaction \therefore no gas produced
3d	decreases rate	AcidTypepHConductivityRate of Reaction1 mol l ⁻¹ sulphuric acidstronglowerhigherfaster1 mol l ⁻¹ ethanoic acidweakhigherlowerslower
4a	1 2 1	Number of protons= atomic number= 1Number of neutrons= mass no - atomic no.= 3 - 1 = 2Number of electrons= atomic number - charge= 1 - 0 = 1
4b	1	Relative atomic mass is the average mass of the isotopes in a sample. If r.a.m. = 1 them the majority of the sample must also have a mass of 1
5α	Polar covalent	A covalent bond is a shared pair of electrons between two atoms. If the electrons are not shared equally between the atoms then the bond becomes polar and has a positive end and a negative end of the bond.
5b(i)	increases	Elements 3 to 9 is the period from lithium to fluorineBars increaseElements 11 to 17 are the period from sodium to chlorine.from $3 \rightarrow 9$ and $11 \rightarrow 17$ NB: Noble gases have zero electronegativity as they have no attraction from electrons
5b(ii)	Bar drawn between 0.8 and 1.4	Bar must be higher in value than element 19 (0.7) as bars increase in size across a period Bar must be lower than value than element 12 (1.5) as element 20 is in same group as element 12 but must be smaller in value than element 12

6a	0.01	n o. of mol = $\frac{mass}{gfm}$ = $\frac{1.57}{157}$ = 0.01 mol
6b	(Covalent) network	Silicon and oxygen are both non-metals \therefore covalent bonding in SiO ₂ Silicon dioxide has a melting point of 1700°C \therefore SiO ₂ can not be molecular as the melting point is too high and SiO ₂ is a covalent network.
6c	Ca ₃ (PO ₄) ₂	Write down Valency below each ion's symbolPut in Cross-over ArrowsFollow arrows and cancel down to get formulaCaPO43-CaPO43-2323
7a	Carbon dioxide	Catalytic carbon monoxide carbon dioxide convertor nitrogen oxides nitrogen unburnt hydrocarbons carbon dioxide + water
7b(i)	125.1	Mass of $CO_2 = \frac{100 \times \text{vol of } CO_2}{56.3} = \frac{100 \times 70.41}{56.3} = 125.1$
7b(ii)	£130	Problem Solving: Information Selection from two graphs 146g CO₂ per km = Car Tax band F ∴ Car Tax Band F = £130.00
8α	Different boiling points	Distillation is used to separate hydrocarbons with different boiling points by progressive evaporation of hydrocarbons and collection of hydrocarbons by condensation.
8b	Increase in carbons increases the viscosity	The higher the number of carbons in a hydrocarbon, the higher the viscosity (thickness) of the hydrocarbon. The marble will take longer to fall through the more viscous liquids.
8c	2,3-dimethylbutane	1. Identify the longest chain:4 carbons-butane2. Identify the sidechains: $2 \times -CH_3$ -dimethylbutane3. Lowest numbering system selected $-CH_3$ on C_2 and C_3 2,3-dimethylbutane
9α	Diagram of products shown:	Н Н Н
9b(i)	Butanoic acid	methanoic acidethanoic acid $H-C$ H $H-C$ H $H-C$ H $H-C$ H $H-C$ H $H-C$ H <
9b(ii)	Turns lime water milky	Gas Hydrogen Oxygen Carbon Dioxide Gas Test Burns with a pop Relights glowing splint Turns lime water milky
10a	thermoplastic	Thermoplastic Plastic which re-shaped on heating Thermosetting Plastic which does not re-shape on heating

10b(i)	F F F F F F -C-C-C-C-C-C- F F F F F F F	F F
10b(ii)	Addition	Addition polymerisation has monomers with C=C double bonds which open up and join up with each other to form a long chain of C-C single bonds in a polymer.
10c	Carbon monoxide	Carbon-based plastic will release carbon monoxide when burned
11a	2,8,8	Ca Ca ²⁺ + 2e ⁻ 2,8,8,2 2,8,8 Calcium atom Calcium ion
11b(i)	O H ∥	$ \begin{array}{c} O \\ \\ -C - OH \\ carboxyl group \end{array} + \begin{array}{c} H \\ H - N \\ amine group \end{array} \xrightarrow{condensation}_{water removed} \begin{array}{c} O \\ \\ -C - N \\ amide/peptide link \end{array} $
11b(ii)	One amino acid from:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12a		The ester link is formed during a condensation between a hydroxyl group and a carboxyl group. Water is removed as the groups join together.
12b	Hydrolysis	Hydrolysis: large molecules split into smaller molecules with water added across the split point in the molecule
12c	8.52	$\begin{array}{c} gfm \ C_{18}H_{36}O_2 = 890g \ (in \ question) \\ \textbf{no of mol} = \frac{\textbf{mass}}{gfm} = \frac{8.9}{890} = 0.01 \ \text{mol} \\ glyceryl \ tristearate + water \longrightarrow glycerol + stearic \\ acid \\ C_{57}H_{110}O_6 + 3H_2O \longrightarrow C_3H_8O_3 + 3C_{18}H_{36}O_2 \\ 1 \ \text{mol} & 3 \ \text{mol} \\ 0.01 \ \text{mol} & 0.03 \ \text{mol} \\ gfm \ C_{18}H_{36}O_2 = (18\times12)+(36\times1)+(2\times16) = 216+36+32 = 284g \\ \textbf{mass} = \textbf{no. of mol} \times \textbf{gfm} = 0.03 \times 284 = 8.52q \end{array}$
13a(i)	Any pH below 7	pH pH below 7 pH = 7 pH above 7 Description Acidic Neutral Alkaling
13a(ii)	-OH group (bottom on the right)	Hydroxyl groups have the formula -OH Carboxyl -COOH groups contain an -OH group within the structure but the proximity of the C=O group to the -OH group changes the properties of the -OH group to the properties of the carboxyl -COOH group.

13b	Line graph showing:	$\frac{1}{2}$ mark: labelling axes + units $\frac{1}{2}$ mark: correct scales $\frac{1}{2}$ mark: plotting points $\frac{1}{2}$ mark: drawing line		
14a	To place metals in order of reactivity	PPA 3.3 Question Metals will react at different rates and can be placed in order of reactivity		
14b	To provide oxygen	PA 3.3 Question otassium permanganate releases oxygen when heated.		
14c	Fast reaction Slow reaction	Magnesium is more reactive than zinc so magnesium would be faster than zinc's moderately fast reaction. Copper is less reactive than zinc so copper would be slower than zinc's moderately fast reaction.		
14d	Could explode	Potassium is more reactive than magnesium and the magnesium reaction is already a fast reaction.		
15a	Titanium is less reactive than sodium	Higher metals will displace lower down metals in a displacement reaction. Sodium can displace titanium because it is higher up the electrochemical series than titanium		
15b	Na → Na⁺ + e⁻	Na Na ⁺ + e ⁻ 2,8,1 2,8 sodium atom sodium ion		
15c	No air must be present to prevent combustion	An argon gas environment in the reaction vessel would prevent oxygen/air getting to the hot metal and combusting.		